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Abstract

The selection of proper coherence pathways is a very important aspect of the design of NMR pulse sequences. This article

describes a C++ program for the calculation of coherence pathway selection via phase cycles, including a module to calculate

cogwheel cycles. Cogwheel phase cycles shorter than the original ones [M.H. Levitt et al., J. Magn. Reson. 155 (2002) 300]

are derived and experimentally tested for the MQMAS experiment for 3/2 spins. Some other cogwheel cycles are derived for

the MQNQMAS, the STMAS experiment, and a PFG diffusion pulse sequence. This program is publicly available through our

website http://www.nyu.edu/projects/jerschow with additional documentation and examples.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The selection of the appropriate coherence pathways

is often an essential ingredient of solid- and liquid-state

NMR pulse sequences [1–3]. The two main tools for

achieving this are phase cycles and pulsed field gradi-
ents [4,5]. Other tools, such as the use of diffusion fil-

ters and flow-based coherence selection have been

suggested [6]. Additionally, the use of echoes and

nearly ideal p pulses can create a rather selective fil-

tering [7]. The calculation of ‘‘ideal’’ phase cycles, i.e.,

the shortest ones, for a coherence selection problem

has been done in some simple cases but a general so-

lution seems elusive so far [8,9]. Furthermore, since
one can apply pulsed field gradients and possibly other

tools to aid the phase cycling in the selection process it

seems difficult to devise a procedure of sufficient flexi-

bility. Therefore the experimenter still needs to resort to

empirical rules to set up phase cycles and pulsed

field gradient sequences. The program presented here is

very useful in this endeavor.

Recently, cogwheel phase cycling has been discov-
ered [10], which can dramatically reduce the size of

phase cycles in many cases. A number of impressive

reductions have been shown (i.e., by a factor of 25 for a

TOSS sequence). It is quite possible that cogwheel cy-

cles are the most efficient phase cycles for a given se-

lection problem. The program is intended to be rather

flexible such as to accommodate most experimental
situations, including heteronuclear experiments, and

will be extended in the future to accommodate the

calculation of the selection process imposed by pulsed

field gradients, and possibly other means. The program

presented here was equipped with a routine to calculate

cogwheel phase cycles based on certain restrictions im-

posed by the user. As the tasks outlined above can lead

to numerically quite demanding calculations this pro-
gram provides the possibility, as its MATLAB prede-

cessor [11], to restrict the calculation to subcycles with

little effort. The program is written in C++ and we wish

to call it CCCP++ (in reference to the earlier program

CCCP—Complete Calculation of Coherence Pathways

[11]). The current program is much more efficient and

includes new features with regard to the calculation of

the coherence pathway selection process by phase cy-
cling. It is posted on the website: http://www.nyu.edu/

projects/jerschow.

Several cogwheel cycles found by CCCP++ are dis-

cussed and shorter variants of the ones described in [10]

are demonstrated experimentally.
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2. Phase cycling

The following treatment mainly follows [10,11] and

includes some additional comments relevant to the

program. A coherence pathway is written as p ¼ ðp0; p1;
. . . ; pnÞ. The rf phases for a particular step with index m

in the phase cycle are represented as a column vector,

/ðmÞ ¼ ð/ðmÞ
1 ;/ðmÞ

2 ; . . . ;/ðmÞ
n ÞT, and the receiver phase is

/ðmÞ
r (one may consider including in /ðmÞ

r a post-digiti-
zation phase shift [12,13]). The pulses may be performed

on different channels for heteronuclear experiments. The

difference coherence pathway is Dp ¼ ðp1 � p0; p2 � p1;
. . . ; pn � pn�1Þ. The signal acquired in the receiver will

have developed a phase due to the rf and receiver phases

according to

/ðmÞ
tot ¼ �Dp � /ðmÞ � /ðmÞ

r ð1Þ
and the effective recorded signal is

sðpÞ ¼
XN
m¼1

expð�i/ðmÞ
tot Þ; ð2Þ

where N is the number of steps in the phase cycle.

Choosing a proper coherence pathway assures that sðpÞ
is maximized (usually equal to N) for the desired path-

ways and is zero, or a small value for the undesired
pathways. Until recently ‘‘nested’’ phase cycles have

been used almost exclusively [2]. ‘‘Cogwheel phase cy-

cles,’’ on the other hand, have been found recently which

require only a much reduced number of steps [10].

3. Cogwheel phase cycling

A set of so-called winding numbers is defined,

m ¼ ðm1; m2; . . . ; mnÞT, mi 2 f0; 1; 2; 3; . . .g, which deter-

mine a given phase cycle, i.e., the mth step of the cycle is

characterized by

/ðmÞ ¼ m2p
N

m; ð3Þ

where N is some positive integer that determines the

number of steps in the phase cycle and m runs from zero
to N � 1. To insure the proper selection of a given de-

sired coherence pathway, p0, the receiver phase for the

mth step in the cycle needs to be set to

/ðmÞ
r ¼ �mDp0 � /ðmÞ; ð4Þ

which corresponds to a receiver winding number

mr ¼ Dp0 � m. A cogwheel phase cycle is then uniquely

determined by (N ; m; mr). Alternatively, a convenient

definition might be (N ; m; p0).
In order to find a set (N ; m; mr) it is necessary to insure

that a minimum number of undesired coherence path-
ways is simultaneously selected by such a cycle. It is

convenient to define a difference pathway d ¼ p� p0

with the coherence differences Dd ¼ ðd1 � d0; d2 � d1;

. . . ; dN � dN�1Þ. According to Eqs. (1), (3), and (4) a
selected pathway p (with its corresponding Dd) satisfies

Dd � m 	 0 ðmod NÞ: ð5Þ
Pathways, for which this equation is not satisfied will be

canceled out, since

XN�1

m¼0

expð�imk2p=NÞ ¼ 0 for any k 2 1; 2; . . . ;N � 1:

ð6Þ
It appears at this point that the winding numbers may be

predicted only in very simple cases. In general a nu-

merical search is necessary.

A simplification is possible in the common case where

one of the elements of Dp is linearly dependent on the

other elements for all considered coherence pathways.

This happens, for example, when the initial coherence

order is zero (equilibrium) and the last coherence order
is minus one (detection) for all considered pathways.

(The more general statement is that pn � p0 is the same

number for all considered pathways.) Since

Dpn ¼ pn � p0 �
Xn�1

i¼1

Dpi ð7Þ

and

Dp0n ¼ p0n � p00 �
Xn�1

i¼1

Dp0i ð8Þ

one can rewrite Eq. (5) as

Dd � Dm 	 0 ðmod NÞ; ð9Þ
where

Dm ¼ ðm1 � mn; m2 � mn; . . . ; mn�1 � mn; 0Þ: ð10Þ
One mi may therefore be left out of consideration.

If additional constraints are available, additional

winding numbers may be left out, as shown in an ex-

ample below. These cases are particularly relevant for

heteronuclear experiments and experiments employing

pulsed field gradients.

4. Program

4.1. Input parameters

The program is supplied with a file specifying a

number of parameters, some of which will be described
for the ensuing discussion. A complete description can

be found on the website.

For the calculation of the selected coherence path-

ways the following parameters may be supplied:

• A phase cycle is supplied in a common format, just as

it would be input in an NMR pulse program.

• The pulses may act on different nuclear species.
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• A special variable indicates which coherence orders
shall be considered at each step in the pulse program,

and for every nuclear species.

• An intensity threshold is supplied, below which the

signal is treated as zero.

For the search for cogwheel cycles [10], the following

parameters are used:

• The desired coherence pathway is specified, and can

include separate pathways for each nuclear species.
• The maximum number of undesired pathways is

specified that will be tolerated for an acceptable so-

lution.

• The range of cogwheel cycle bases N to be searched is

specified.

• It can be specified for which pulses no winding num-

ber need be searched. This is useful for speeding up

the calculation in certain cases as discussed below.
Again, this can be specified for each nuclear species

separately.

4.2. Algorithm

The implementation of both the calculation of the

pathway selection as well as the numerical search for

cogwheel cycles was straightforward along the lines of
the equations presented in the previous section. There

are, however, some potential efficiency improvements

that are in conflict with the overall goal of making the

program flexible, incorporating the case of heteronuclei,

and allowing the user to restrict the consideration to a

subset of pathways.

For example, it may seem that the following proce-

dure could speed up the calculation of coherence path-
ways. If, say, the phases /ðmÞ

i for a given pulse i have a

greatest common divisor 2p=k (with k a nonzero integer)

the elements of Dpi that need be considered are in

f0; 1; . . . ; k � 1g. This would be beneficial in many cases

to cut down on the number of pathways to be consid-

ered. This procedure is, however, not very practical as

the reconstruction of p from Dp is a computationally

inefficient procedure because of the additional uncer-
tainty in the definitions of its elements (mod k). This

procedure becomes even less attractive when one con-

siders heteronuclear spin systems, or when certain

pathways are to be neglected through input by the user.

Finally, cogwheel phase cycles almost always have N

much larger than the maximum considered coherence

order and the restriction of the coherence order jump to

a region 0; 1; . . . ;N � 1 represents no advantage at all in
this case.

Since the actual calculation of the signal intensities

according to Eq. (2) is not a very costly procedure (the

necessary sin and cos factors can be prestored), it seems

reasonable to simply run a loop through all possible

coherence pathways p, considering the restrictions im-

posed by the user.

The following observation may be useful in searching
for new cogwheel cycles. It was found in all our nu-

merical searches so far that if for a given N-step cycle

an appropriate m is found, other (N þ 1)- and (N þ 2)-

step cycles could be found. Therefore, in scanning the

numbers N it is useful to search in large increments

and gradually narrow them down. No rigorous proof

for this has been found so far, so it cannot be guar-

anteed that the cycles found will also represent the
minimal cogwheel cycles. A crude estimation of the

minimum N cogwheel cycle may be obtained by N PQn
i¼1ð2p

ðiÞ
max þ 1Þ, where n is the number of pulses, and

pðiÞmax is the maximum coherence order at step i in the

pulse sequence. In this particular case, it was assumed

that p0 is the same value for all considered pathways.

This consideration is motivated by the fact that m can

always be chosen to be

m ¼ 1; ½2pð1Þmax

 
þ 1�; . . . ;

Yn�1

i¼1

½2pðiÞmax þ 1�
!T

ð11Þ

to make
P

i Ddimi have distinct values for all Ddi except
the trivial case Dd ¼ 0, which indicates the desired co-

herence pathway. It is, however, quite likely that much

tighter bounds on N can be found, especially in cases

where not all coherence orders ranging from �pðiÞmax to

þpðiÞmax are allowed.

5. Experimental

A well-crystallized sample of RbNO3 was selected for

the experimental investigation. The fine powdered

sample was packed in a 4-mm MAS rotor. All the ex-

periments were performed on a Bruker AV 400MHz

NMR spectrometer equipped with a 9.4-T wide bore

ultrashielded magnet. 87Rb MQMAS spectra were re-
corded at a Larmor frequency of 130.927MHz. The

FAM-RIACT-FAM MQMAS pulse sequence [14,15]

was used (Fig. 1).

The spinning frequency was 8 kHz. The rf powers

used for the strong and soft pulses were 27.7 and

4.3 kHz. The RIACT pulse was applied for a duration of

31.25 ls. The FAM interval consisted of n ¼ 4 cycles of

pulse-delay-pulse-delay, with each element lasting 1 ls
and a p phase difference between consecutive pulses. A

total of 256t1 and 1024t2 data points were acquired and

covered a spectral window of 2812.5Hz
 50 000Hz.

The recycle delay was 1 s.

6. Results and discussion

Levitt and coworkers have found the smallest possi-

ble cogwheel cycle for a MQMAS experiment for

I ¼ 3=2 spins [10], which selects only the desired
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coherence pathway (Fig. 1) under the assumption that

only )1 coherence is detected (perfect quadrature de-

tection). Here we examine, how one can derive other

cycles using this program by specifying quite reasonable
restrictions on the coherence pathways. The cogwheel

cycles are indicated in the notation COGNðm1; m2; m3; mrÞ
[10].

• COG29ð9; 11; 2; 28Þ. This cycle selects only the de-

sired pathway even when the detection coherence or-

der may be )1, 0, or +1 (imperfect quadrature

detector). The experiment is shown in Fig. 2a

• COG19ð3; 8; 1; 9Þ. This cycle also considers an imper-
fect quadrature detector, but restricts the pathways to

odd and zero coherence orders. The experiment is

shown in Fig. 2b.

• COG11ð3; 1; 0; 4Þ. Here, a perfect quadrature detec-

tor is assumed, and only odd coherence orders plus

zero order are considered. The experiment is shown

in Fig. 2c.

For comparison, an experiment was also perfor-
med with one of the 23-step cogwheel cycles [10],

COG23ð3; 0; 22; 12Þ, a spectrum of which is shown in

Fig. 2d. For half-integer quadrupolar spins it appears

quite reasonable to disregard pathways with even co-

herence orders (except zero order), since those pertain to

satellite transitions. While single-quantum coherences of

satellite transitions are now detected on a routine basis

in STMAS experiments [16,17], they still have compar-
atively weak intensities when the magic angle is not set

extremely accurately [18–20]. It is expected that higher

quantum satellite transitions will produce quite weak

signal intensities, and could be attenuated further by

deliberately offsetting the rotor axis from the magic

angle by a small amount (up to 0.05�). Such a small

offset will have virtually no effect on the appearance of

the signal coming from odd coherence orders.
Apart from a change in the signal-to-noise ratios re-

lated to the differences in the numbers of accumulated

transients, no disparities are seen in the spectra. It can

be assumed that the 11-step cycle performs just as well

as the 23-step cycle in this case.

For a 5Q3QMAS [21] experiment (Fig. 3a), for ex-

ample, the following cogwheel cycles may be used:

COG201ð157; 142; 3; 0; 108Þ considering all possible
pathways and a perfect quadrature detector, COG55

ð33; 30; 1; 0; 7Þ when only odd coherence orders plus zero

order are considered, and COG29ð3; 1; 0; 0; 16Þ when in

addition the last two coherence orders are restricted to

ð1;�1Þ. The last requirement may seem too stringent

but it is easily realizable in practice by choosing a rela-

tively long echo delay.

For the I ¼ 3=2 SCAM-STMAS experiment with a
split-t1 delay and compensation for magic-angle offset

effects [19,20] (Fig. 3b) an appropriate cycle would be

COG87ð75; 9; 1; 0; 12Þ considering a perfect quadrature

detector and COG21ð9; 1; 0; 0; 12Þ if a perfect echo can

be assumed at the end. The corresponding nested phase

cycles would be of size 125 and 25, respectively, for a 3/2

spin. The gains may be greater for higher spins.

Another experiment where cogwheel cycles may prove
to be very useful is the diffusion experiment employing

bipolar field gradients and a longitudinal eddy current

delay (Fig. 3c) [22]. The phase cycles used previously

were based on a compromise between size and selectiv-

ity. A good way to find a useful cogwheel cycle is to

consider the two spoiler gradients to be orthogonal to

the diffusion gradients and to each other. In this case

Fig. 2. 87Rb MQMAS spectra taken from a solid RbNO3 sample using

the pulse sequence of Fig. 1 and the cogwheel phase cycles (a)

COG29ð9; 11; 2; 28Þ, (b) COG19ð3; 8; 1; 9Þ, (c) COG11ð3; 1; 0; 4Þ, and
(d) COG23ð3; 0; 22; 12Þ. In order to make the total number of scans

similar (a) 58, (b) 57, (c) 66, and (d) 69 scans were acquired for each

transient.

       

 

 

 

  

Fig. 1. FAM-RIACT-FAM MQMAS pulse sequence. The pulse

lengths were 1, 1, 9, 31.25, 1, 1, and 48 ls for all pulses in sequence. The

pulses drawn with lower amplitude indicate selective pulses applied to

the central transition. The first FAM sequence, the first soft pulse and

the RIACT pulse were phase cycled together.
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one may consider the coherence orders after the third

and sixth pulses to be restricted to zero. Then Dp1þ
Dp2 þ Dp3 ¼ 0, and Dp4 þ Dp5 þ Dp6 ¼ 0, and one can

set m1 and m4 to zero in the search, in addition, if perfect

quadrature detection is assumed (and there are few
reasons to do otherwise with modern hardware), m7 ¼ 0.

In this case the computational effort to find a proper

cycle is minimized. If the maximum coherence order is

two (for a two-spin system), a cycle that selects only the

two desired pathways ð0;�1; 1; 0; 1;�1; 0;�1Þ and ð0; 1;
�1; 0;�1; 1; 0;�1Þ is COG80ð0; 58; 18; 0; 3; 1; 13Þ. If the
diffusion experiment is run on a one-spin system (e.g.,

water) the cycle COG8ð0; 7; 0; 0; 1; 0; 4Þ is found. By
contrast, the shortest conventional cycle to achieve this

would have 2
 4
 4
 4 ¼ 128 and 2
 4
 3
 4 ¼ 96

steps, respectively (in the latter case the second and the
fourth cycles may not be reduced to three, for this would

make it impossible to retain both pathways). It is ex-

pected that useful cycles can be found for the convec-

tion-compensated siblings of this experiment [23].

Further experiments where the procedure of finding

short cogwheel phase cycles might even be more im-

pressive include MQNQMAS for higher spins, the

QCPMG experiment [24,25], and the QPASS experi-
ment [26].

7. Compatibility and availability

The program was written in ANSI C++ using the

Standard Template Library. It is expected to compile

without difficulties (using the supplied Makefile) on any
GNU g++ compatible compiler of version 2.95 or

higher. Some lower versions probably would work also,

as well as older compilers as long as they are ANSI

compliant. It has been compiled on Linux (Mandrake

8.2, i586), and SGI (Irix 6.5, mips R12000). The parsing

module was created using flex++ version 2.5.1 and 2.5.4,

it is possible that these versions or later are required,

although this could not be verified (flex++ is available
under the GNU license). The program itself including all

source code is given away under the GNU license, and is

available for download at http://www.nyu.edu/projects/

jerschow.

8. Conclusion

A C++ program is presented for the calculation of

the coherence pathway selection process by phase cy-

cling. A module is included to calculate cogwheel cycles.

Issues related to efficiency have been discussed. Some

improvements to the program are planned, including the

calculation of attenuation by pulsed field gradients, and

the analysis of imperfect 180 in the selection process [7].

Some new cogwheel cycles are presented for the
MQMAS, the MQNQMAS, and the SCAM-STMAS

experiments. Experiments demonstrate the performance

of some of these cycles for MQMAS. A cogwheel cycle is

also presented for the stimulated echo diffusion experi-

ment employing bipolar gradients.

Finally, the program may be useful for interfacing

with NMR simulation software, where prior knowledge

of the possible coherence pathways may speed up the
calculations significantly.
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Fig. 3. (a) 5Q3QMAS sequence, (b) SCAM-STMAS sequence. The

symbols used have their standard meanings. (c) PFG stimulated echo

pulse sequence for measuring diffusion coefficients, employing bipolar

gradients [22] and a longitudinal eddy current delay. All pulses are 90�
pulses except pulses 2 and 5, which are 180� pulses. The gradients GZ1,

GZ2, GZ4, and GZ5 (also termed ‘‘diffusion gradients’’) are ramped up

during a diffusion experiment. The coherence selection afforded by

those should not be taken into account, since the experiment should

provide consistent data down to very weak Z gradients. The gradients

GX3 and GY 6 are spoiler gradients to remove any coherence of order

other than zero and are orthogonal to each other and to the diffusion

gradients.
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